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Abstract

This papers discusses the leaky aquifer function considered in a
recent paper by Frank Harris in the Journal of Computational and
Applied Mathematics (2008). We describe properties of an integral
representing this function and give details on how to compute this
function with a single algorithm for a wide range of the parameters.

1 Introduction

The function

Kν(x, y) =

∫
∞

1

e−xt−y/t
dt

tν+1
(1.1)

is related with the modified Bessel function (the MacDonald function)

Kν(z) =
1

2

∫
∞

0

e−z(t+1/t) dt

tν+1
. (1.2)

For ν = 0 hydrologists call the function in (1.1) the leaky aquifer function,
because this function can be used to describe water levels in pumped aquifer
systems with finite transmissivity and leakage could be analyzed in terms of
this integral.

In a recent paper by Frank Harris [3] the function (1.1) with general ν
is considered and we refer to this paper for references to the hydrological
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literature. Also for ν = 1, 2, 3, . . . this function is useful in other hydrological
systems.

The function in (1.1) can also be viewed as a generalization of the incom-
plete gamma function. In fact this is the starting point used in [1] with the
notation

Γ(α, x; b) =

∫
∞

x

tα−1e−t−b/t dt, (1.3)

which for b = 0 is the standard incomplete gamma function

Γ(α, x) =

∫
∞

x

tα−1e−t dt, (1.4)

and it is easily verified that

Kν(x, y) = xνΓ(−ν, x; xy). (1.5)

In [1] closed forms are given in terms of modified Bessel functions and error
functions when ν = 1

2
− n, n = 0, 1, 2, . . ..

We also mention a symmetry relation. We use in (1.1) the transformation
t→ 1/t, which gives

Kν(x, y) =

∫ 1

0

tν−1e−x/t−yt dt, (1.6)

from which we deduce (see also (1.2))

Kν(x, y) +K−ν(y, x) =

∫
∞

0

e−xt−y/t
dt

tν+1
= 2(x/y)ν/2Kν (2

√
xy) . (1.7)

Frank Harris observed that the difference in the names assigned to the
functions Kν(x, y) and Γ(α, x; b) was probably the reason there have been no
previous communications connecting the several research communities. As
application areas he mentions heat conduction, probability theory, electronic
structure in periodic systems, and hydrology.

In his paper [3] Harris gives a number of analytical properties of Kν(x, y)
in the form of relations with other special functions, but the main part of the
paper is an overview of expansions for this function. It presents several new
expansions that are in various parameter ranges computationally more effi-
cient than any of earlier proposed methods of evaluation. Several expansions
are used in numerical evaluations for certain parameter ranges.
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In particular we mention the small y expansion in terms of incomplete
gamma function

Kν(x, y) = xν
∞∑

j=0

Γ(−ν − j, x)
(−xy)j
j!

. (1.8)

When x is small it is better to use a similar expansion forK−ν(y, x) combined
with the relation in (1.7), which requires the evaluation of the modified Bessel
function.

In the present paper we exclude these small x, y cases, assuming for exam-
ple x ≥ 1 and y ≥ 1, and for other values we describe one numerical method
based on numerical quadrature. We use a few transformations to bring the
integral in a certain standard form, after which simple quadrature methods
can be used for numerical evaluations. This method is not comparable in
efficiency as some expansions derived in [3] for certain parameter ranges, but
the main advantage is a universal method, that can be described in terms of
a simple algorithm that can be used for very large parameter ranges of the
function.

2 Major contributions and scaling

First we like to see which part of the interval in (1.1) gives the main contri-
bution. The maximal value of the exponential function occurs at t =

√
y/x.

When y > x this point is inside the interval of integration, and when y < x it
is outside this interval. In the latter case the exponential function is maximal
at the endpoint t = 1 of the interval of integration.

When we include the parameter ν in this analysis, we write

Kν(x, y) =

∫
∞

1

eφ(t)dt

t
, (2.1)

where
φ(t) = −xt− y/t− ν ln t, (2.2)

with derivative

φ′(t) = −xt
2 + νt− y

t2
. (2.3)

The function φ(t) is maximal at the zeros of φ′(t). The relevant (positive)
zero is

t0 = t0(x, y, ν) =

√
ν2 + 4xy − ν

2x
. (2.4)
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We see from this form, or easier from (2.3), that t0 = 1 when y = x + ν.
Hence, when y > x + ν the maximal value of φ(t) is inside the interval of
integration at t = t0, and when y < x+ ν this function assumes its maximal
value at the endpoint t = 1. In particular when the parameters are large we
conclude that a rough estimate of Kν(x, y) is given by

Kν(x, y) =

{
O

(
eφ(t0)

)
if y > x+ ν

O (e−x−y) if y ≤ x+ ν.
(2.5)

In the {x, y, ν} parameter space, crossing the “transition plane” y = x+ν
causes a change in behavior of Kν(x, y). Especially when the parameters are
large, the function changes from small values exp(φ(t0)) at one side of the
plane to very small values exp(−x− y) at the other side of the plane.

Considering this from the viewpoint of asymptotic analysis, we call t0
a saddle point, and when this point is properly inside the interval of inte-
gration we can use Laplace’s method (see [11, §II.1]) to obtain asymptotic
representations of which the dominant factor is given in the first case of
(2.5). When the saddle point t0 is properly inside [0, 1] we can use Watson’s
lemma (see [11, §I.5]), after a transformation to a Laplace-type integral.
Although the asymptotic forms in (2.5) pass continuously into each other,
the detailed asymptotic forms obtained after applying Laplace’s method or
Watson’s lemma are discontinuous at the transition plane y = x+ ν.

In [1] we have given an asymptotic representation of Γ(α, x; b) in terms
of the complementary error function

erfc z =
2√
π

∫
∞

z

e−t
2

dt, (2.6)

which representation behaves smoothly at the transition manifold (in that
case defined by the relation b = x(x − α)), and which is valid in a wide
parameter domain of the three variables α, x, b. The same result can be
written in terms of the present parameters x, y, ν of the function Kν(x, y).

Understanding the global behavior as given in (2.5) of the function to
be computed is important when choosing a numerical algorithm, because,
in particular when the parameters x, y, ν are large, the function values may
be extremely small, and numerical instabilities may arise in certain repre-
sentations. For example, scaling the function before a numerical quadrature
method is used is important when relative accuracy is wanted. In that case
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we can write, using (2.1) and (2.5),

Kν(x, y) = eφ(tm)

∫
∞

1

eφ(t)−φ(tm)dt

t
, (2.7)

where tm = t0 (given in (2.4)) when y > x+ ν and tm = 1 when y ≤ x+ ν.
In a similar way, if we prefer the representation in (1.6) as the starting

point for numerical evaluations (as we do), we can write

Kν(x, y) = eψ(tm)

∫ 1

0

eψ(t)−ψ(tm)dt

t
, ψ(t) = −x/t− yt+ ν ln t, (2.8)

where tm = t0(y, x,−ν) (with t0 given in (2.4)) when y > x + ν and tm = 1
when y ≤ x+ ν.

3 Numerical quadrature of Kν(x, y)

In the numerical literature the role of the trapezoidal rule has been discussed
with a number of examples, from which it is concluded that this rule gives
excellent performances for a certain type of integrals, and how given integrals
can be transformed into this type. In particular, when the functions to be
integrated are analytic (as in the present case) several efficient transforma-
tions are discussed. Detailed information, also with a discussion on error
estimations and exact error representations in the form of contour integrals,
can be found in the work by Mori and co-workers [7, 6, 10, 8, 9], and in the
recent books [4, §4.2] and [2, §5.4].

The trapezoidal rule works with great efficiency for integrals of the type∫ 1

0
f(t) dt when f is very smooth, say analytic, and if for the derivatives

hold f (n)(0) = f (n)(1). In that case all terms in the error estimate of this
quadrature rule based on the Euler-Maclaurin formula (see [2, p. 131]) vanish,
and we have convergence of exponential type.

In the present integral in (2.8) we have vanishing derivatives of all orders
at t = 0, but at t = 1 this property does not hold. So, straightforward
application of the compound trapezoidal rule to (2.8) will give the standard
error estimate O(h2), where h is the stepsize of the rule.

We use the following simple substitution

t = tanh
s

1 − s
, 0 ≤ s ≤ 1, (3.1)
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Table 1: Function values of Kν(x, y) and relative errors δ for a selection of
parameter values x, y, ν. In the first nine rows h = 1/40, in the last three
rows h = 1/80.

x y ν Kν(x, y) δ

4.95 5.00 2.00 0.12249 98798× 10−004 0.16 × 10−10

10.0 2.00 6.00 0.41500 45943× 10−006 0.63 × 10−10

3.10 2.60 5.00 0.52850 43253× 10−003 0.27 × 10−10

49.0 50.0 20.0 0.44311 56799× 10−044 0.96 × 10−10

100.0 20.0 60.0 0.54438 05280× 10−054 0.60 × 10−09

31.0 26.0 50.0 0.31405 73138× 10−026 0.24 × 10−09

490.0 500.0 200.0 0.57348 63502× 10−432 0.56 × 10−10

1000.0 200.0 600.0 0.5014 041537× 10−524 0.92 × 10−04

310.0 260.0 500.0 0.51400 54359× 10−250 0.60 × 10−06

490.0 500.0 200.0 0.57348 63503× 10−432 0.36 × 10−12

1000.0 200.0 600.0 0.50145 04964× 10−524 0.47 × 10−12

310.0 260.0 500.0 0.51400 57464× 10−250 0.75 × 10−12

which gives

Kν(x, y) = eψ(tm)

∫ 1

0

eψ(t)−ψ(tm)

t (cosh(s/(1 − s)) (1 − s))2
ds. (3.2)

In this representation all derivatives at both endpoints vanish. For small
values of x the effect of vanishing derivatives at s = 0 is less noticeable, and
we refer in that case to the efficient expansions mentioned at the end of §1.
Small values of y are allowed, however.

It is possible to use different substitutions, but we continue with (3.1).
For other transformations of the integral as in (2.8) we refer to the papers by
Mori and co-workers, with one based on the error function (2.6). That rule
requires in each function evaluation the evaluation of the error function, but
it may have excellent convergence properties.

To give a an idea about this starting point for applying the trapezoidal
rule, we use Cases 2, 3, and 4 considered in [3] and larger values of x, y, ν.
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Case 1 has x = 0.01, which value we have excluded. In the first 9 rows of the
Table 1 we use 40 integrand evaluations; this means, we use the compound
trapezoidal rule with h = 1/40. This gives rather uniform relative errors δ,
except in rows 7– 9. In rows 10 –12 we use h = 1/80 and we notice that again
a rather uniform relative error δ is obtained. All computations are done with
Maple, with Digits =15 (working precision of 15 significant digits).

3.1 About error estimations

As mentioned earlier, Mori and co-authors have given estimates and repre-
sentations of the error in the application of the trapezoidal rule for integrals
of the form (3.2). Let us write the integral in the form

I =

∫ 1

0

f(s) ds. (3.3)

Then one estimate of the error Eh in the trapezoidal rule

I = Th + Eh, Th = 1
2
h(f(0) + f(1)) + h

n−1∑

k=0

f(kh), h = 1/n, (3.4)

can be written in the form of

Eh ∼ −
∫

C+

f(s)e2πis/h ds−
∫

C
−

f(s)e−2πis/h ds, (3.5)

where C+ is a contour in the half-plane ℑs > 0 and C− in ℑs < 0, both
running from 0 to 1. The contours may be close to the original interval [0, 1],
but they can be deformed in order to pick up the relevant information from
saddle points of the integrand or singular points of the function f(s).

Similar estimates follow from Fourier representations of Eh. We have [5,
§15.2]

Eh = −2
∞∑

k=1

Fk, Fk =

∫ 1

0

f(s) cos(2πks/h) ds. (3.6)

Because f(s) has vanishing derivatives of all orders, this Fourier series is
rapidly convergent and Eh can be approximated by the first term of the
series. That is, Eh ∼ −2F1. By writing the cosine as exponentials, and
deforming the interval [0, 1] into contours in the complex plane, we obtain
the estimate in (3.5).
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For simple functions it is possible to obtain estimates of the integrals in
(3.5) for small values of h from saddle points or singular points. We are
dealing, however, with a function that depends on three parameters x, y, ν,
which may be large as well (we mean, much larger than 1/h). In addition,
we use a transformation from the integral in (2.8) into (3.1) by (3.1), which
is a rather simple transformation, but for a saddle point analysis it causes
extra complications.

A detailed saddle point analysis falls outside the scope of this paper.
However, we can use a numerical method for estimating the error. An aspect
of efficiency of the trapezoidal rule is the fact that we can use earlier computed
function values when we halve the stepsize. After computing Th of (3.4) we
use the shifted rule

I = Sh + Ẽh, Sh = h

n−1∑

k=0

f
(
kh + 1

2
h)

)
, Ẽh = −2

∞∑

k=1

(−1)kFk, (3.7)

and compute the absolute error |Th − Sh| (or the relative error). When this
quantity satisfies a certain precision criterion, we stop the computation by
accepting the result I

.
= Th/2 = 1

2
(Th + Sh). Because this is the trapezoidal

rule with h/2 the value Th/2 is a much better approximation in a fast con-
verging rule than each of Th and Sh. Notice that Th − Sh

.
= −4F2, which is

two times the approximate error in the rule for Th/2.
We see this effect in Table 1 in the two evaluations for x = 1000.0,

y = 200.0, ν = 600.0. For h = 1/40 the relative error is 0.92 × 10−4, when
we halve the stepsize it is 0.47 × 10−12.

We conclude that if, for a certain h, we have |Th − Sh| < ǫ we can be
rather sure that for the rule for Th/2 we have |Eh/2| < ǫ; similar for relative
errors.

4 Concluding remarks

We have described a rather uniform method for computing the leaky aquifer
function Kν(x, y) based on a simple quadrature rule. As shown in detail
in Frank Harris’s paper [3], by using expansions of this function that are
designed for specific parameter ranges more efficient algorithms are possible
than the one considered in the present paper.

It is also true that this function, given in the form of an integral with
positive integrand, is not difficult to compute by using standard quadrature
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routines as, for example, provided by packages as Matlab, Mathematica,
or Maple, or by using routines written in Fortran in standard quadrature
libraries.

However, by preparing the integral by using simple transformations, an
efficient quadrature rule can be used, which can easily be written as an
algorithm and can be used for high performance computing for a wide range
of the parameters.
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